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Abstract. An anisotropic spin model on a triangular semi-infinite lattice with ferromagnetic
nearest-neighbour interactions and one antiferromagnetic next-nearest-neighbour interaction is
investigated by the cluster transfer-matrix method. A phase diagram with〈2〉 antiphase,
ferromagnetic, incommensurate, and disordered phase is obtained. The bulk uniaxial
incommensurate structure modulated in the direction of the competing interactions is found
between the〈2〉 antiphase and the disordered phase. The incommensurate structure near the
surface with free and〈2〉 boundary conditions is studied at different temperatures. Paramagnetic
damping at the surface and enhancement of the incommensurate structure in the subsurface
region at high temperatures and a new subsurface incommensurate structure modulated in two
directions at low temperatures are found.

1. Introduction

The cluster transfer-matrix method was founded as a useful tool for describing commensurate
and incommensurate structures in two-dimensional (2D) and three-dimensional (3D) spin
lattice models. It is able to describe floating incommensurate structures in two dimensions
[1–3] as well as an infinite number of commensurate structures in 3D models [4]. The
method yields a phase diagram of the model, free energy, correlation functions, and
magnetization as a function of coordinates. As all the calculations are performed in real
space, there is a possibility of studying the properties of spatially inhomogeneous systems,
for example a lattice with a surface, where the inhomogeneity is localized in one direction,
and it is homogeneous in the others.

The cluster transfer-matrix method is a generalized mean-field approximation—it uses
auxiliary effective multisite fields that are not directly related to the magnetization or
multisite correlation functions of the model, nevertheless, the correlation functions can
be calculated from them. In two dimensions, the spatial dependence of the fields in
one direction is obtained by simply iterating the effective fields from one lattice row
perpendicular to it, to the following one. It is more difficult to get the spatial dependence
inside the row, i.e. in the direction perpendicular to the direction of the iteration. Here, the
correlation functions of a row of spins interacting by original interactions of the Hamiltonian
plus by the spatially dependent effective multisite fields should be found. For that reason
the iteration in the systems with uniaxial incommensurate structure is always performed in
the direction of the incommensurate modulation.
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The transfer matrix formalism is also used to derive the fermion Hamiltonian in the
domain wall theory of commensurate–incommensurate (C–IC) transitions in 2D lattice
models [5]. The domain walls in the incommensurate structure are described by world
lines of fermions and therefore, the transfer matrices are defined on columns of sites in the
direction of the incommensurate modulation, i.e. perpendicular to the transfer matrices used
in our method.

It is simple to study surface or subsurface properties in the systems where the surface
is perpendicular to the direction of the iteration. In fact, this is always done when the bulk
properties of the system are calculated, as the starting values of the effective fields in the
iteration procedure play the role of surface boundary conditions. In this case, the most
conspicuous properties of the subsurface region appear for the paramagnetic phase near the
phase transition line with the incommensurate or ferromagnetic structure. In the first case,
the surface effects attenuate with distance from the surface in an oscillatory way, in the
latter case, monotonically.

In this paper we study surface and subsurface properties of a 2D system with the surface
orientatedparallel to the incommensurate modulation. Now, the effective fields used in
the iteration procedure are functions of distance from the surface and all of them should be
stored in the computer memory. Fortunately, far enough from the critical point the surface
effects are confined to a relatively narrow region, outside which the effective fields acquire
constant bulk values. Thus, the shortest possible distance from the critical point in the
parameter space is limited by the computer memory in our calculations.

The cluster transfer-matrix method is related to the mean-field approximation of Jensen
and Bak [6] where a nonlinear mapping of site magnetizations instead of effective fields
is carried out. There, in distinction to our method, the physically stable solutions are
mathematically unstable. The exact nonlinear mapping is possible on lattices without closed
loops, such as Cayley tree and Bethe lattice. These lattices are characterized by the site
coordination number rather than the dimensionality. This nonlinear mapping technique was
applied to various models including Potts [7] Ising [8] and ANNNI model [9]. It is difficult
to relate the results for the hierarchical lattices to those for Bravais lattices. Nevertheless,
the phase diagram of the ANNNI model on Cayley tree with infinite coordination number
[9] bear similar features to that of the 3D ANNNI model.

The ANNNI models, defined on the square lattice and anisotropic antiferromagnetic
(AA) model on the triangular lattice, are the most simple 2D models displaying an
uniaxial incommensurate structure. There are two competing interactions in both models:
ferromagnetic nearest-neighbour (nn) interactions and antiferromagnetic third-nearest-
neighbour interactions in the ANNNI model and antiferromagnetic nn and ferromagnetic
next-nearest-neighbour (nnn) in the AA model on the triangular lattice. Both models are
anisotropic, i.e. two of the third-nn interactions and one or two of the nnn interactions are
missing. Both models were investigated by the cluster transfer-matrix approximation and the
results were consistent with numerous other approaches such as Monte Carlo calculations,
series expansions, cluster variation method, domain wall theory, finite-size scaling [10–13].

The phase diagrams of 2D models are more simple than those in the 3D case. They
consist of a small number of commensurate phases and a single region of a floating
incommensurate phase. In the ANNNI model, the nn interactions are ferromagnetic
and consequently, the rows are ordered ferromagnetically; in the AA model they have
a commensurate structure with periodicity of three lattice constants.

Here, we study a natural generalization of the ANNNI model to the triangular lattice.
The nn interactions are ferromagnetic and one of the nnn interactions is antiferromagnetic,
unlike in the ANNNI model where the antiferromagnetic interaction is between the third-
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Figure 1. Anisotropic model on a triangular half lattice with two competing interactions. Each
spin interacts with six nn spins byJ1 interaction (light lines) and two nnn spins byJ2 interaction
(heavy lines). The two types of 2×4 clusters used in the calculation are in the inset. Our zig-zag
row encompasses two ordinary rows of the triangular lattice.

nnn. The signs of the interactions of our model are opposite to the above-described AA
model. The phase diagram and all other properties are similar to those in the ANNNI model.
Hence, it can be expected that the surface effects in the ANNNI model on the square lattice
are closely related to those described below.

2. Model and method

We consider an anisotropic ferromagnetic model of Ising spins (σ = ±1) on a triangular
semi-infinite lattice interacting by nn and one nnn interactions. All the nn interactions of
the model are ferromagnetic. Two of the three possible nnn interactions are missing and
the remaining one is antiferromagnetic. The triangular lattice with the spin interactions and
the clusters used in further calculation are shown in figure 1, wherej = 0, . . . ,∞ and
i = −∞, . . . ,∞. We shall calculate the free energy and the local magnetization by using
the cluster-matrix method developed by one of us [14].

The cluster-matrix method is based on a subsequent summation of the weight functions
exp[βH(σi)] over the spin variables in the consecutive rows when calculating the partition
function. For computational reasons the zig-zag rows shown in figure 1 perpendicular to
the nnn interaction are chosen. The lattice surface is perpendicular to the rows and the
expected direction of the domain walls. It is put at the columnj = 0.

Let us write the Hamiltonian of the model

H =
∑

J1σi,j (σi,j+1+ σi,j−1+ σi,j+2)+ J2σi,j σi+1,j

as a sum of energies of the 2× 4 clusters

H =
∑
i,j

[Gi,2j +G′i,2j+1].

We use two types of the 2× 4 clusters, that are shifted by one lattice constant and can
be transformed into each other by translation and rotation by an angle of 180◦ in the plane
of the lattice. They are shown in the inset of figure 1.
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The energy of the bulk cluster of the first type is

Gi,2j = J1

[
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(1)

whereJ1 is the nn interaction andJ2 is the nnn interaction andj = 1, 2, . . . ,∞. The
terms in (1) are divided by the number of appearances of the particular bond in different
overlapping clusters. The expression for the energy of the cluster of the second type denoted
by G′i,2j+1 can be found by interchangingi ↔ i + 1 and 2j → 2j + 1 on the right-hand
side of (1). The denominators in (1) are different in the expressions for the energiesGi,0

andG′i,1 of the surface clusters, because the translational symmetry is broken here.
The evaluation of the partition function

Z =
∑
{σi }

exp[βH(σi)]

can be transformed into the calculation of the numbersλi appearing as normalization factors
in the iterative procedure for auxiliary functions9i∑

Si

9i(Si)Ti(Si, Si+1) = λi9i+1(Si+1) (2)

starting from an appropriate function91(S1) [1–3]. (Si denotes a row variableSi ≡
{σi,0 . . . , σi,2j , σi,2j+1, σi,2j+2 . . .} and Ti(Si, Si+1) = exp[β

∑j=+∞
j=0 (Gi,2j + G′i,2j+1)].)

Z =∏∞i=0 λi .
Unfortunately, each of the auxiliary functions9i(Si) acquires an infinite number of

values and an approximation should be done to perform the summation on the left-hand
side of (2).

Assuming an asymptotic behaviour of correlation functions already at distances
exceeding the cluster size, we can try to factorize9i(Si) in the same way as the function
Ti(Si, Si+1) =

∏∞
j=0 exp(Gi,2j ) exp(G′i,2j+1), i.e.

9i(Si) '
∞∏
j=0

9i,2j (s
k
i,2j )9

′
i,2j+1(s

k
i,2j+1) (3)

whereski,l denotes a set of site variables of a finite row clusterski,l = (σi,l, . . . , σi,l+k) and
9i,2j (s

k
i,2j ), 9

′
i,2j+1(s

k
i,2j+1) are the cluster auxiliary functions acquiring a finite number of

values.
The numberk characterizes the order of the approximation and was taken to be equal

to 4 which is the width of the clusters in (1) (figure 1).
The logarithms of the values of the cluster auxiliary function for different cluster

configuration represent the above-mentioned multisite effective fields. As the functions
are defined on finite clusters, only short-range effective interactions are taken into account
in our approximation.

Substituting (3) into (2), we obtain a relation between the known functions9i,2j ,
9 ′i,2j+1 found in the preceding iteration step and the new functions9i+1,2j , 9 ′i+1,2j+1.
The expression for9i+1,2j , 9 ′i+1,2j+1 in terms of9i,2j , 9 ′i,2j+1 can be found by a partial
summation of the both sides of (2). This problem is one-dimensional (1D) and the partial
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summation can be done exactly—again by the technique of auxiliary functions as shown in
detail in [1–3, 14]. In contrast to the previous calculations on infinite lattices, equation (2)
has no translational symmetry in the row direction due to the presence of the surface and the
equation should be solved for all9i+1,2j , 9 ′i+1,2j+1, j = 0, . . . ,∞. In practice, the cluster
auxiliary functions would converge to their bulk values fastest if we were far enough from
the continuous IC–C phase transition. We confined ourselves to the distances from the IC–C
phase transition line where the number of the cluster auxiliary functions taken into account
did not exceedj = 400.

In the paramagnetic and ferromagnetic phase9i,2j , 9 ′i,2j+1 do not depend oni, in
the 〈2〉 antiphase consisting of zig-zag rows with alternating magnetization,9i,2j , 9 ′i,2j+1
are periodic functions ofi with period of two. In the incommensurate phase, their period
is a continuous function of the interaction constants. The functions9i,2j , 9 ′i,2j+1 are
j independent in the bulk, i.e. the row structure is ferromagnetic or paramagnetic in all
phases. Nevertheless, they are strongly spatially modulated near the surface which leads to
the areas of reversed magnetization.

From our knowledge of the auxiliary functions9 and9 ′, it is possible to find the site
magnetizations. We have

〈σi,l〉 =
∑
Si

∏
j

9i,2j (s
k
i,2j )9

′
i,2j+1(s

k
i,2j+1)σi,l9̃i,2j (s

k
i,2j )9̃

′
i,2j+1(s

k
i,2j+1) (4)

where9̃ ′, 9̃ ′ are the functions that are calculated by the same iteration procedure as in (2)
but in the opposite direction.

3. Results and discussion

The calculations have shown that the anisotropy model with competing nn and nnn
interactions on a triangular lattice can be found in one of the four phases: disordered
paramagnetic, commensurate〈2〉 antiphase, ferromagnetic, and the incommensurate one
lying between them.

The phase diagram of the model, shown in figure 2, is similar to the phase diagram
of the 2D ANNNI model on the square lattice [2, 10, 11]. Near the multiphase point
J1/J2 = 1 the disordered phase should persist toT = 0 in the form of an extremely
narrow strip. Unfortunately, by using our method it is not possible to verify this fact at
very low temperatures and the direct phase transition between the ferromagnetic and the
incommensurate phase cannot be excluded. On the other hand, we found no signs confirming
the opposite case. ForJ1/J2 → 0 the incommensurate phase seems to be stable down to
the pointT = 0. The IC-disorder phase transition line appears to tend to a Lifshitz point at
the ferrodisorder phase transition line but at the close vicinity of it, it turns abruptly down
and apparently meets it atT = 0. It is seen that a less careful numerical treatment of the
problem could lead to an erroneous confirmation of the Lifshitz point in 2D ANNNI model.

When we putJ2 = 0, the exactly solvable ferromagnetic Ising model on the triangular
lattice with a critical temperature ofTc = 3.732. . . is restored. Our method yieldsTc = 3.64.
We believe that the comparison of these two values suggests the accuracy of the whole phase
diagram shown in figure 2.

The interaction constants and temperature in all further presented results are localized
in the areas denoted by two short bars in the incommensurate region of the phase diagram
near the phase transition lines with the disordered paramagnetic phase and〈2〉 antiphase,
respectively. At higher temperatures the bulk magnetization is of a sinusoidal shape. At
lower temperatures the structure consists of strip-like〈2〉 antiphase domains. Their width
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Figure 2. Phase diagram of the model. The two short bars (atJ1/J2 = 0.5, T/J2 = 1.241, 1.47)
show the parameter regions of the calculations presented in figures 3–8.

is growing to infinity with temperature approaching the IC–C phase transition line. The
bulk structures can be seen in a depth of more than 400 columns from the surface in the
following figures.

We consider two different boundary conditions at the surface: the free boundary
condition (FBC) and the〈2〉 antiphase boundary condition (ABC). In our approach the
boundary condition is given by the starting values9i,0 of the auxiliary function. For FBC
all values of the auxiliary function on the surface are taken to be equal to unity. The ABCs
can be simulated by the values of the cluster auxiliary function deep in the bulk of the〈2〉
structure at low temperature. Actually, they have been taken as an output of calculation at
J1/J2 = 0.5, T /J2 = 0.1 for j = 600.

The site magnetizations at every second zig-zag row and at the first 480 subsurface
columns forT/J2 = 1.47, 1.252, 1.247, 1.241 are shown in figures 3(a)–(d). All these
figures are calculated for the FBC. In figure 4, the magnetization along the rows of sites
with maximum absolute value of magnetization as a function of distance from the surface
is shown.

As expected, the amplitude of the sinusoidal magnetization at the surface is diminished
by the absence of interactions for FBC at the temperatureT/J2 = 1.47, close to
the paramagnetic structure. This suppression is replaced by an enhancement of the
incommensurate waves of magnetization in the narrow subsurface region (figure 3(a)). The
presence of the surface affects, approximately, only the first 60 columns at this temperature.
A similar increase of the magnetization profile near the surface was found for the semi-
infinite ferromagnetic Ising model [15].

The situation is different for temperatures near the IC–C phase transition where wide 1D
domains of〈2〉 structure bounded by domain walls perpendicular to the nnnJ2 interaction
J2 occur in the bulk. Two neighbouring domains differ by a phase shift ofπ (figures 3(b)–
(d)). Near the surface, the strip-like bulk domains become modulated, as well, and
incommensurate domains are formed in the direction perpendicular of the nnn interaction.
By approaching the IC–C phase transition line (lowering the temperature) the region of
the biaxial incommensurate structure becomes wider and its depth changes linearly with
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Figure 3. (a) Site magnetizationsmi,j = 〈σi,j 〉 at the first 480 subsurface columns(j =
1, . . . ,480) for T/J2 = 1.47, J1/J2 = 0.5 and FBC. (b) Site magnetizationsmi,j at the first
480 subsurface columns forT/J2 = 1.252, J1/J2 = 0.5 and FBC. (c) Site magnetizations
mi,j at the first 480 subsurface columns forT/J2 = 1.247, J1/J2 = 0.5 and FBC. (d) Site
magnetizationsmi,j at the first 480 subsurface columns forT/J2 = 1.241, J1/J2 = 0.5 and
FBC.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

temperature, as shown in figure 5. Extrapolating the linear plot to the temperature of the
phase transitionTIC−C = 1.1876, the width of the biaxially modulated structure at the critical
point is found approximately equal to 1300 columns.

Figures 6 and 7 show that the influence of the boundary condition is small. The change
from FBC to ABC affects only the first few subsurface columns. The phase of the〈2〉
structure is fixed at the surface, but it does not influence the phase in the bulk that changes
quite freely at the domain walls. The structure perpendicular to the surface is also unaffected.
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Figure 3. (Continued)

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

Here it is necessary to note that the incommensurate structures in 2D lattice models are
floating, i.e. they can be shifted freely with respect to the underlying lattice. Thus, not only
is the total magnetization of an incommensurate structure at a vanishing magnetic field equal
to zero, but also the local one is. Typically, the mean-field approximations spontaneously
break the symmetry of the model in the ordered phase. In our case the iteration technique
also involves a self-consistent procedure characteristic for a mean-field treatment that fixes
the structure at one position. Then, the incommensurate structure is represented by a
wave-like site dependence on the magnetization. To obtain results corresponding to the
exact summation of the partition function, we have to further sum over all positions of the
floating structure. In this case the site magnetizations would be equal to zero and only the
pair spin correlation function would reflect the incommensurate space modulation.

The cluster auxiliary functions9i,2j , 9 ′i,2j+1 are the direct output of the iteration
procedure and in the bulk behave similarly to the magnetization shown in the previous
figures. In the low-temperature incommensurate structure, they form 1D strip-like domains
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Figure 4. Site magnetizationsmi,j in the direction perpendicular to the surface as a function of
the column numberj atT/J2 = 1.241 (the heaviest curve), 1.247, 1.252, 1.47 (the lightest curve)
andJ1/J2 = 0.5 for FBC. The curves follow one of ridges of the structures in figures 3(a)–(d).

Figure 5. Width of the surface affected region (stars) and angleα between of the bulk auxiliary-
function domain wall and the domain wall near the surface (triangles).

possessing the symmetry of〈2〉 phase. Near the surface the domains bend in the opposite
direction to the direction of the iteration.

This situation is shown in figure 8, where one of the 64 values of the cluster auxiliary
function 9i,2j at subsurface lattice sites is plotted. The direction of the iteration is from
left to right, i.e. the domains are bent backwards. It looks like there is a friction between
the auxiliary-function structures and the surface when the space evolution of the auxiliary
function is calculated by the iteration procedure.

The domains are bent but near the surface they are again straight. The bending angle
between the direction of the bulk and surface domain increases when approaching the critical
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Figure 6. Site magnetizationsmi,j at the first 480 subsurface columns forT/J2 =
1.241, J1/J2 = 0.5 and ABC.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)
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120 240 360

0
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m

depth j

Figure 7. Site magnetizationsmi,j in the direction perpendicular to the surface as a function
of the column numberj at T/J2 = 1.241 (the heaviest curve), 1.247, 1.252, 1.47 (the lightest
curve) andJ1/J2 = 0.5 for ABC. The curves follow one of the ridges of the structure in figure 6.

line as shown in figure 5. At the critical temperature, the angle tends to 45◦.
The magnetization is calculated from equation (4) which involves two auxiliary function

which are iterated in opposite directions and therefore their surface parts are bent in the
opposite sense. The surface incommensurate structure is in fact their interference pattern
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Figure 8. Cluster auxiliary function9i,j at the first 480 subsurface columns forT/J2 =
1.247, J1/J2 = 0.5 and FBC. Direction of iteration is from left to right.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org/EJ/welcome)

and the resulting modulation of the magnetization has a 2D character.
As the bending angle of the auxiliary-function domains is between 0◦ and 45◦ the 2D

magnetization domains are oblong at higher temperatures and become square-like near the
phase transition line. On the other hand, if the linear extrapolation is applicable up to the
critical line, the width of the bulk domains becomes infinite while the width of the surface
region remains finite. Thus, the subsurface structure should in fact disappear at the phase
transition.

The width of the subsurface structure was measured as a distance from the surface to
the point of the maximum curvature of the bent domain wall.

In conclusion, the influence of the surface on the incommensurate structure of an
anisotropic Ising model on a triangular lattice was investigated by the cluster transfer-matrix
method. The uniaxial incommensurate structure in a finite region near the surface changes
its character and becomes biaxial. The width of the biaxially modulated structure seems to
be finite at critical temperatures. Formation of the biaxial structure can be interpreted as an
interference pattern of two auxiliary-function wave-like structures.

From a more physical point of view, it can be seen as a result of a misfit between the
bulk structure with longer periodicity than that of the surface structure due to the absence
of a part of the interaction at the surface that is equivalent to an effective increase in
temperature.
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